THERMOMECHANICAL MEASUREMENTS FOR ENERGY SYSTEMS

MENR (A.A. 2017-2018)

Laboratory n. 7

1) Fuel Cell

A hydrogen kit for educational experiments is made of the elements indicated in the figure below:

The main characteristics of the components are:

Electrolyzer cell

Electrode area 4 cm² Nominal power 1 W Permissible voltage 0-2 V

	Permissible current 0-1 A
	Maximum H_2 production 4.3 cm ³ /min
	Maximum O_2 production 2.15 cm ³ /min
Fuel cell	Electrode area 4 cm ²
	Nominal power 400m W
	Generated voltage 0.4-0.98 V
Gas tank	Capacity (volume) 20 cm ³
	Resolution 1 cm ³
Solar cell	Area 90 cm ²
	No-load voltage 2 V
	Nominal current 350 mA _{dc}
	Power (MPP) 500 mW
Fan	Nominal power 100 mW

Bring the apparatus into operation: connect the power supply to the electrolyzer cell, connect the decade resistor and the two digital multimeters to the fuel cell.

- a. Define experimentally the **V-I characteristic curve** and the **power curve** of the fuel cell, by setting different resistance load values. Define the maximum power working point of the fuel cell.
- b. Define experimentally the **energy efficiency** of the fuel cell with a constant load, measuring the fuel consumption for (at least) two different time instants. Verify the thermodynamic efficiency of the cell changes for the two (or more) measured power values.
- c. Define the Faraday efficiency, according to the power values previously chosen.

For point b. refer to the formula: $\eta = \frac{W_{electric}}{W_{hudrogen}} = \frac{\nabla I}{Q_{H_2} \cdot H_{low}}$ where Q_{H_2} is the volume flow rate and $H_{low} = 10.8 \times 10^6 \text{ J/m}^3$ is the reaction enthalpy of the fuel.

For point c. refer to the formula: $\eta_{Faraday} = \frac{V_{H_2(theoretical)}}{V_{H_2(consumed)}}$ where the $V_{H_2(Theoretical)} = \frac{R \cdot I \cdot T \cdot \Delta t}{F \cdot p \cdot z}$ is the Faraday's first law; $R = 8.314 \frac{J}{mol \cdot K}$; *I* is the current expressed in [A]; *T* is the reaction temperature expressed in [K]; $F = 96485 \frac{A \cdot s}{mol}$; *p* is the pressure expressed in [Pa]; *z* is the number of electrodes for fuel molecule ($z_{H2} = 2$).